¹¹Boron Quadrupole Hyperfine Structure in the Rotational Spectrum of Hydroxydifluoroborane

Kirsten Vormann and Helmut Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

Z. Naturforsch. 44a, 1191-1195 (1989); received October 12, 1989

The ^{11}B quadrupole hyperfine structure in the rotational spectra of three isotopic species of hydroxydifluoroborane, BF₂OH, BF₂OD, and BF₂ ^{18}OH has been investigated and the quadrupole coupling constants of these species have been determined. Using the variation of the ^{11}B quadrupole coupling constants with isotopic substitution, it has been possible to evaluate the complete quadrupole coupling tensor, including the off-diagonal element χ_{ab} , for each isotopic species.

Introduction

The microwave spectra of six isotopic species of hydroxydifluoroborane have been observed and assigned by Takeo and Curl [1]. They determined the rotational constants of all isotopic species. With the assumption of equal BF bond lengths they calculated the structure of the molecule. They could not resolve the ¹¹B hyperfine structure (hfs).

Hydroxydifluoroborane is a planar near-oblate asymmetric rotor. Substitution of H with D or 16 O with 18 O causes a considerable rotation of the molecule in the principal axis system. It is thus possible to calculate the orientation of the quadrupole coupling tensor in the principal axis system and the off diagonal element χ_{ab} of each isotopomer, using the coupling constants of the three isotopic species BF₂OH, BF₂OD, and BF₂ 18 OH.

Experimental

The substance was prepared in the waveguide cell by mixing BF_3 and H_2O .

$$BF_3$$
 + H_2O \Leftrightarrow BF_2OH + HF ,
 BF_2OH + H_2O \Leftrightarrow $BF(OH)_2$ + HF ,
 $BF(OH)_1$ + H_2O \Leftrightarrow $B(OH)_3$ + HF .

BF₃ was obtained commercially from Fa. Merck, Darmstadt, and used without further purification.

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikalische Chemie der Universität Kiel, Olshausenstr. 40–60, D-2300 Kiel.

BF₂OD was prepared using D₂O instead of H₂O, and BF₂¹⁸OH using ¹⁸O enriched water (30%). The spectra of BF₂OH and BF₂OD were recorded with our microwave Fourier transform (MWFT) spectrometers [2–5] in the frequency range 4.8–40 GHz at room temperature and pressures between 0.13 and 0.65 Pa (1 and 5 mTorr). The measured transitions are listed in Tables 1 a and 1 b. All frequencies were determined by a least squares fit of the multiplet signals in the time domain to minimize overlapping effects [6, 7].

Transitions of BF₂¹⁸OH were measured in a pulsed molecular beam Fourier transform microwave spectrometer [8]. The absorption-emission cell consists of a Fabry-Perot resonant cavity (mirror diameter: 16 cm, mirror curvature: 20 cm) inside a high vacuum chamber. A pulsed nozzle is used to generate a supersonic molecular beam of the substance, which is diluted with argon as carrier gas. Frequencies resulting from these measurements may not be as accurate as those from normal MWFT spectroscopy because there is no obvious fitting procedure to correct frequencies of narrow multiplets. The line shape in this type of spectroscopy is influenced by the resonance curve of the cavity. Therefore a line form analysis is difficult. The transition frequencies are listed in Table 1 c.

Results and Discussion of the ¹¹B Quadrupole Coupling

The rotational transition frequencies of the three isotopomers of hydroxydifluoroborane were predicted with the rotational constants given by Takeo and

0932-0784 / 89 / 1200-1191 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

33 532.576

17 680.210

32 529.696

34 077.255

12 221.887

34 306.523

10 610.102

34 410.180

Table 1b. Measured transition frequencies [MHz] of BF₂OD, all symbols are used in the same way as in Table 1a. $J K_{-} K_{+} - J' K'_{-} K'_{+}$ Table 1a. Measured transition frequencies [MHz] of BF₂OH with his-splittings. v: measured frequency, Δv_{his} : his-splitting referred to the strongest component, δ_{his} : deviation of the experimental and the calculated splitting, v_0 : hypothetical unsplit line frequency calculated with the his-shift of the components provided by the evaluation program.

components provided by the evaluation program.	nsplit line frequed by the evalu	ency calculated	ed with t	he hfs-s	hift of the	$J K_{-} K_{+} - J' K'_{-} K'_{+}$	F-F'	v [MHz]	$\Delta v_{ m hfs}$ [MHz]	$\delta_{\rm hfs} \\ [{\rm kHz}]$	ν ₀ [MHz]
$JK_{-}K_{+}-J'K'_{-}K$	$\zeta'_+ F - F'$	v [MHz]	Δν _{hfs} [MHz]	$\delta_{\rm hfs}$ [kHz]	ν ₀ [MHz]	3 2 1 - 3 2 2	9/2-9/2 7/2-7/2	12 221.755 12 222.164	-0.409	1.	12 221.88
110 - 111	5/2 - 5/2 5/2 - 3/2 3/2 - 5/2 1/2 - 3/2	5 003.895 5 004.196 5 004.558 5 003.656	-0.301 -0.663 0.239	252	5 004.109	3 0 3 - 2 0 2	2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	12 221.971 12 221.563 34 417.357 34 417.109	0.159 0.159 0.248	$\frac{1}{2}$	34 417.27
$1 \ 0 \ 1 \ - \ 0 \ 0 \ 0$	$\begin{array}{c} 2 - 3 \\ 2 - 3 \\ 2 - 3 \\ 2 - 3 \end{array}$	15 194.451 15 194.079 15 194.742	0.372 -0.291	1 3	15 194.377	3 1 3 - 2 1 2	3/2 - 1/2 $9/2 - 1/2$ $7/2 - 5/2$ $5/2 - 3/2$	34 417.282 34 306.612 34 306.440 34 306.349	0.093 0.172 0.263	0 -2 -6	34 306.52
$2 \cdot 1 \cdot 1 = 2 \cdot 1 \cdot 2$	7/2 - 7/2 8/2 - 5/2 3/2 - 3/2 1/2 - 3/2	15 012.157 15 013.122 15 012.458 15 012.431 15 012.130	$\begin{array}{c} -0.965 \\ -0.301 \\ -0.274 \\ 0.027 \end{array}$	1004	15 012.431	2	3/2 – 1/2 11/2 – 11/2 9/2 – 9/2 7/2 – 7/2 5/2 – 5/2	34 306.531 10 610.288 10 610.499 10 610.427	$\begin{array}{c} 0.081 \\ -0.211 \\ -0.139 \\ 0.076 \end{array}$	s - 1 - 2 -	10 610.102
2 0 2 - 1 0 1	22-5 22-3/2 1-3/2/3/5	25 598.582 25 598.280 25 597.912 25 598.762 25 598.762	$\begin{array}{c} 0.302 \\ 0.670 \\ -0.180 \\ -0.180 \end{array}$	7-77	25 598.465	5 3 3 - 5 1 4	$\begin{array}{c} 11/2 - 11/2 \\ 9/2 - 9/2 \\ 7/2 - 7/2 \\ 5/2 - 5/2 \\ 13/2 - 11/2 \\ 11/2 - 11/2 \end{array}$	34 409.926 34 410.623 34 410.377 34 409.682 34 363.985 34 364.449	-0.697 -0.451 0.244 -0.464	121 1	34 364.164
2 1 2 - 1 1 1	2222 2227 227/3/5	25 384.654 25 384.654 25 384.592 25 384.357 25 385.134	0.371 0.433 0.668 -0.109	$\begin{array}{c} -1 \\ 0 \\ 1 \end{array}$	25 384.894	5 2 3 - 5 2 4	$\begin{array}{c} 9/2 - 9/2 \\ 7/2 - 7/2 \\ 13/2 - 13/2 \\ 11/2 - 11/2 \\ 9/2 - 9/2 \\ 2/2 - 9/2 \end{array}$	34 364.317 34 363.849 34 077.078 34 077.545 34 077.545	-0.332 0.136 -0.467 -0.331	1 - 2	34 077.255
4 3 1 - 4 3 2	2-11 2-9/ 2-7/ 2-5/	14 251.607 14 251.879 14 251.784 14 251.514	$\begin{array}{c} -0.272 \\ -0.177 \\ 0.093 \end{array}$	940	14 251.704	633-634	$\frac{1/2 - 1/2}{15/2 - 15/2}$ $\frac{13/2 - 15/2}{13/2 - 13/2}$ $\frac{11/2 - 11/2}{9/2 - 9/2}$	34 076.942 33 532.447 33 532.773 33 532.697 33 532.369	$\begin{array}{c} 0.136 \\ -0.326 \\ -0.250 \\ 0.078 \end{array}$	0 88-1	33 532.576
5 4 1 - 5 4 2	$ \begin{array}{c} 13/2 - 13/2 \\ 11/2 - 11/2 \\ 9/2 - 9/2 \\ 7/2 - 7/2 \end{array} $	13 715.798 13 715.965 13 715.909 13 715.744	$\begin{array}{c} -0.167 \\ -0.120 \\ 0.045 \end{array}$	0	13 715.862	43 - 62	$ \begin{array}{c} 15/2 - 15/2 \\ 13/2 - 13/2 \\ 11/2 - 11/2 \\ 9/2 - 9/2 \end{array} $	34 374.367 34 374.695 34 374.617 34 374.282	$\begin{array}{c} -0.328 \\ -0.250 \\ 0.085 \end{array}$		34 374.500
651 - 652		13 081.115 13 081.217 13 081.193 13 081.087	$\begin{array}{c} -0.102 \\ -0.078 \\ 0.028 \end{array}$	1 5 - 1 - 2	13 081.115	7 6 2 - 7 4 2	$ \begin{array}{c} 11/2 - 11/2 \\ 11/2 - 11/2 \\ 15/2 - 15/2 \\ 13/2 - 13/2 \\ 17/2 - 17/2 \end{array} $	17 680.145 17 680.270 29 925.570	-0.125	-	17 680.210 29 925.661
7 6 1 - 7 6 2	$ \begin{array}{c} 17/2 - 17/2 \\ 11/2 - 11/2 \\ 15/2 - 15/2 \\ 13/2 - 13/2 \end{array} $	12 355.024	-0.070	13	12 355.062	7 4 3 - 7 4 4	$ \begin{array}{c} 15/2 - 15/2 \\ 13/2 - 13/2 \\ 11/2 - 11/2 \\ 17/2 - 17/2 \\ 11/2 - 11/2 \end{array} $	29 925.791 29 925.747 29 925.528 32 529.575	-0.221 -0.177 0.042	m	32 529.696
							77	32 529.809	-0.234	8	

Table 1 c. Measured transition frequencies [MHz] of BF₂ ¹⁸OH, all symbols are used in the same way as in Table 1 a.

J K_ K_+ - J' K'_ K'_+	F - F'	v [MHz]	$\Delta v_{ m hfs} \ [{ m MHz}]$	$\delta_{\rm hfs} = [{ m kHz}]$	v ₀ [MHz]
2 0 2 - 1 0 1	7/2 - 5/2 $5/2 - 3/2$ $3/2 - 1/2$ $5/2 - 5/2$ $3/2 - 3/2$ $1/2 - 3/2$	24 867.540 24 867.317 24 866.987 24 866.860 24 867.782 24 868.468	0.223 0.553 0.680 -0.242 -0.928	0 - 1 - 8 - 15 - 2	24 867.438
2 1 2 - 1 1 1	7/2 - 5/2 $5/2 - 3/2$ $3/2 - 1/2$ $5/2 - 5/2$ $1/2 - 1/2$ $1/2 - 3/2$	24 218.560 24 218.098 24 218.200 24 217.898 24 218.857 24 219.234	0.462 0.360 0.662 -0.297 -0.674	-13 - 3 - 2 - 6 - 9	24 218.413
2 1 2 - 1 0 1	7/2 - 5/2 $5/2 - 3/2$ $3/2 - 1/2$ $5/2 - 5/2$ $3/2 - 3/2$	24 947.704 24 947.497 24 947.156 24 947.042 24 947.973	0.207 0.548 0.662 -0.269	4 0 - 2 8	24 947.605
2 0 2 - 1 1 1	7/2 - 5/2 $5/2 - 3/2$ $3/2 - 1/2$ $5/2 - 5/2$ $1/2 - 1/2$	24 138.389 24 137.930 24 138.029 24 137.714 24 138.691	0.459 0.360 0.675 -0.302	$\begin{array}{c} 3 \\ 1 \\ -2 \\ -10 \end{array}$	24 138.239

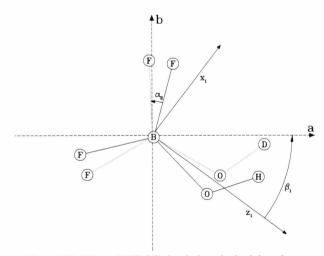


Fig. 1. BF₂OH and BF₂OD in their principal inertia axes system a, b, c. α_2 is the rotational angle caused by substitution of H and D. z_1 and x_1 are directions of the principal coupling tensor of BF₂OH in the molecular plane, β_1 is the angle between the z-axis and the a-axis.

Curl [1]. Centrifugal distortion effects were neglected because we were interested only in the hfs splittings. The splittings were analysed using first order theory [9]. The results of these analyses are listed in Table 2. Standard errors of the fit are given in brackets.

Because hydroxydifluoroborane is a molecule with a plane of symmetry, the axis perpendicular to the plane is a principal axis of inertia and also a principal axis of the quadrupole coupling tensor [10]. In this case the transformation equation of the quadrupole coupling tensor from the principal axis system of inertia to its own principal axis system has the form

$$\begin{pmatrix} \chi_{aa} & \chi_{ab} & 0 \\ \chi_{ab} & \chi_{bb} & 0 \\ 0 & 0 & \chi_{cc} \end{pmatrix} = S \begin{pmatrix} \chi_z & 0 & 0 \\ 0 & \chi_x & 0 \\ 0 & 0 & \chi_y \end{pmatrix} S^{-1}$$

with

$$S = \begin{pmatrix} \cos \beta_i & -\sin \beta_i & 0 \\ \sin \beta_i & \cos \beta_i & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

 β_i , i = 1, is the angle between the z quadrupole tensor axis and the a axis of the principal inertial axis system of the isotopomer BF₂OH (see Figure 1). We use i = 2, 3 for the two other isotopomers BF₂OD and BF₂¹⁸OH.

Table 2. ¹¹B quadrupole coupling constants and used rotational constants [1] of the three isotopomers of hydroxy-difluoroborane, σ : standard deviation of the hfs analysis, $\overline{\Delta v}$: mean splitting.

BF ₂ OH:	
A = 10 320.32 MHz B = 10 099.33 MHz C = 5 095.13 MHz	Correlation coefficient matrix:
$ \chi_{+} = 1.477(5) \text{ MHz} $ $ \chi_{-} = -3.867(7) \text{ MHz} $	1.000 0.350 1.000
$ \chi_{aa} = -1.477(5) \text{ MHz} $ $ \chi_{bb} = -1.195(6) \text{ MHz} $ $ \chi_{cc} = 2.672(6) \text{ MHz} $	
$\frac{\sigma:}{\Delta v} = \frac{3 \text{ kHz}}{278 \text{ kHz}}$	
BF ₂ OD:	
A = 10 296.88 MHz B = 9 400.85 MHz C = 4 905.77 MHz	Correlation coefficient matrix:
$ \chi_{+} = 1.717(9) \text{ MHz} $ $ \chi_{-} = -3.637(9) \text{ MHz} $	1.000 0.019 1.000
$ \chi_{aa} = -1.717(9) \text{ MHz} $ $ \chi_{bb} = -0.960(9) \text{ MHz} $ $ \chi_{cc} = 2.677(9) \text{ MHz} $	
$\frac{\sigma:}{\Delta v}$: 3 kHz $\frac{3}{\Delta v}$: 238 kHz	
BF ₂ ¹⁸ OH:	
$A = 10 \ 216.55 \ \text{MHz}$ $B = 9 \ 487.18 \ \text{MHz}$ $C = 4 \ 910.57 \ \text{MHz}$	Correlation coefficient matrix:
$\chi_{+} = 1.798(9) \text{ MHz}$ $\chi_{-} = -3.484(16) \text{ MHz}$	1.000 0.110 1.000
$ \chi_{aa} = -1.798(9) $ MHz $ \chi_{bb} = -0.843(13) $ MHz $ \chi_{cc} = 2.641(13) $ MHz	
σ : 7 kHz	

Solving this matrix equation, we get expressions for χ_{aa} , χ_{bb} , χ_{cc} and χ_{ab} :

△v: 476 kHz

$$\chi_{aai} = \chi_z \cdot \cos^2 \beta_i + \chi_x \cdot \sin^2 \beta_i \,, \tag{2.1}$$

$$\chi_{bbi} = \chi_x \cdot \cos^2 \beta_i + \chi_z \cdot \sin^2 \beta_i \,, \tag{2.2}$$

$$\chi_{cci} = \chi_{v}, \qquad (2.3)$$

$$\chi_{abi} = 0.5 \cdot (\chi_z - \chi_x) \cdot \sin 2\beta_i, \qquad (2.4)$$

$$\chi_{aai} - \chi_{bbi} = (\chi_z - \chi_x) \cdot \cos 2\beta_i. \tag{2.5}$$

It is a reasonable approximation in (2.1) to (2.5) for i=1, 2, 3 to assume that the values of χ_x, χ_y and χ_z are independent of an isotopic substitution of nuclei other than the coupling one.

Table 3. Principal values of the ^{11}B quadrupole coupling tensor in $^{11}BF_2OH$ together with values of the off-diagonal constants χ_{ab} and β_1 for each isotopic species.

$$\begin{array}{ccc} \chi_x = -0.837(50) \text{ MHz} & \chi_z = -1.835(50) \text{ MHz} \\ \textbf{BF_2OH,} & \overline{\beta}_1 = & 36.8(8)^\circ \colon \chi_{ab} = -0.479(34) \text{ MHz} \\ \textbf{BF_2OD,} & \beta_2 = & 21.4(8)^\circ \colon \chi_{ab} = -0.339(26) \text{ MHz} \\ \textbf{BF_2}^{18} \textbf{OH,} & \beta_3 = -0.8(8)^\circ \colon \chi_{ab} = & 0.014(14) \text{ MHz} \end{array}$$

Table 4. ¹¹B quadrupole coupling constants [MHz] of some difluoroborane compounds and the principal values of their coupling tensors.

Compound	7/	2/	~	Lit.
Compound	Xaa	Хьь	χ _{cc}	LIL.
HBF,	-0.75(9)	-2.585(55)	3.335(55)	[11]
CH ₃ BF ₂	-2.713(21)	-0.695(27)	3.408(27)	[12]
$C_6H_5BF_2$	-2.589(12)	-0.600(15)	3.189(15)	[13]
BF ₂ OH	-1.477(5)	-1.195(6)	2.672(6)	*
BF_2OD	-1.717(9)	-0.960(9)	2.677(9)	*
BF_2^{2} OH	-1.798(9)	-0.843(13)	2.641 (13)	*
Compound	χ_z	χ_x	χ_y	
BF_2OH	-1.835(50)	-0.837(50)	2.672(6)	
	$\chi_z = \chi_{aa}$	$\chi_x = \chi_{bb}$	$\chi_y = \chi_{cc}$	
CH ₃ BF,	-2.713(21)	-0.695(27)	3.408(27)	
$C_6H_5BF_2$	-2.589(12)	-0.600(15)	3.189(15)	
	$\chi_z = \chi_{bb}$	$\chi_x = \chi_{aa}$	$\chi_y = \chi_{cc}$	
HBF_2	-2.585(55)	-0.75(9)	3.335(55)	

^{*} This work.

$$\beta_2$$
 and β_3 can be expressed as $\beta_i = \beta_1 - \alpha_i$, $i = 2, 3$. (3)

 α_2 is the angle between the z-axes of the principal quadrupole tensors of BF₂OH and BF₂OD, caused by the substitution of H with D; α_3 is the corresponding angle in the BF₂OH – BF₂¹⁸OH pair. These two angles are calculated from the r_s -structure of the molecule given by Takeo and Curl:

$$\alpha_2 = 15.4^{\circ}, \quad \alpha_3 = 37.6^{\circ}.$$

For the $BF_2OH - BF_2OD$ pair we get for i = 2 and i = 1 with (2.5) and (3)

$$\frac{\chi_{aa2} - \chi_{bb2}}{\chi_{aa1} - \chi_{bb1}} = \frac{\cos 2(\beta_1 - \alpha_2)}{\cos 2\beta_1}.$$
 (4)

Expression (4) can be solved for β_1 :

$$\beta_1 = \frac{1}{2} \cdot \arctan \frac{[(\chi_{aa2} - \chi_{bb2})/(\chi_{aa1} - \chi_{bb1})] - \cos 2\alpha_2}{\sin 2\alpha_2}.$$
 (5)

The same mathematical formalism for the BF₂OH – BF₂¹⁸OH pair leads to another equation for β_1 :

$$\beta_1 = \frac{1}{2} \cdot \arctan \frac{[(\chi_{aa3} - \chi_{bb3})/(\chi_{aa1} - \chi_{bb1})] - \cos 2\alpha_3}{\sin 2\alpha_3}.$$
(6)

Expressions (5) and (6) allow us to calculate β_1 .

BF₂OH-BF₂OD pair:

$$\beta_1 = 37.2^{\circ}$$
,

BF₂OH-BF₂¹⁸OH pair:

$$\beta_1 = 36.4^{\circ}$$
.

The mean is

$$\overline{\beta}_1 = 36.8(8)^{\circ}$$
.

For the calculations of χ_x , χ_z and χ_{ab} of the three isotopomers we use the mean value $\overline{\beta}_1$. We assume the error of $\overline{\beta}_1$ to be equal to the difference of the two β_1 values. Results of these computations are given in Table 3. The standard errors of the coupling constants have been calculated using Gaussian error propagation.

- [1] H. Takeo and R. F. Curl, J. Chem. Phys. 56, 4314 (1972).
- [2] G. Bestmann, H. Dreizler, H. Mäder, and U. Andresen, Z. Naturforsch. 35 a, 392 (1980).
- [3] G. Bestmann and H. Dreizler, Z. Naturforsch. 37 a, 58
- [4] W. Stahl, G. Bestmann, H. Dreizler, U. Andresen, and R. Schwarz, Rev. Sci. Instrum. 56, 1759 (1985).
- [5] Ch. Keussen, N. Heineking, and H. Dreizler, Z. Naturforsch. 44a, 215 (1989).
- [6] I. Merke and H. Dreizler, Z. Naturforsch. 43a, 196 (1988).
- [7] J. Haekel and H. Mäder, Z. Naturforsch. 43a, 203 (1988).

In Table 4 we list the quadrupole coupling constants of some difluoroborane compounds. With the assumption that the bonding orbitals of all listed compounds are sp²-hybrids, the orbital perpendicular to the sp²-plane is a pure p orbital. The size of the coupling constants χ_{cc} gives us an approximate idea of the occupation of orbital caused by back donation of electrons from the bond partners of boron. The coupling constant by a single p-electron of boron is $eQq_{210} =$ -5.39 MHz [14]. HBF₂ and CH₃BF₂ have the highest positive χ_{cc} values, that means the lowest occupation of the p-orbital. The χ_{cc} value of $C_6H_5BF_2$ is slightly lower caused by interactrion with the π -system of the phenyl group, but we believe that the main part of the occupation is produced by the fluorine atoms [13]. Consequently the χ_{cc} values of the BF₂OH isotopomers are the lowest ones because the BF and BO bonds are quite similar.

We thank members of our group for help and discussion, Prof. Dr. M. C. L. Gerry, Vancouver, for carefully reading the manuscript, the Deutsche Forschungsgemeinschaft, the Land Schleswig-Holstein and the Fonds der Chemie for funds. The calculations were made at the computer center of the university.

- [8] W. Stahl et al., to be published.
- [9] W. Gordy and R. L. Cook, Microwave Molecular Spectra, John Wiley, New York 1984, Chapt. IX 4.
- [10] loc. cit. [9], 419 ff.
 [11] N. P. C. Westwood, W. Lewis-Bevan, and M. C. L. Gerry, J. Mol. Spectrosc. 106, 227 (1984).
- [12] L. Engelbrecht, Diss. 1975, University Kiel.
- [13] K. Vormann and H. Dreizler, Z. Naturforsch. 44a, 84
- [14] loc. cit. [9], Chapt. XIV, Table 14.2.